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Abstract

Lately, cardio regenerative therapeutic approaches in clinic have received strong boost from
promising research advances in stem cells. Researchers have shown applications of the first
generation of clinical trials using cell-based therapies in the heart that have been performed with
bone marrow and adipose tissue derived mesenchymal stem cells shortcomings in the first
generation cells. Second generation cell therapies are considered superior and being considered
towards the use of cardiac-committed cell populations. These include cardiac progenitor
cells and pluripotent stem cell derived cardiomyocytes. However, translating the research
laboratory results along with pre-clinical data into effective clinical treatments is still thought to
be challenging. This is due to the existing lack of knowledge on the regenerative mechanisms
of action of these therapeutic products in addition to the stringent regulatory and safety concerns.
This has prompted researchers to consider advanced analytical methods for characterization of
such complex products and a deep understanding of their therapeutic effects at the cell and
molecular level. This characterization is considered very critical to overcome the challenges and
make these cells compatible with the advanced therapies. To this end, omics technologies
including proteomics and glyco(proteo)mics that are based on state-of-the-art mass-
spectrometry have shown tremendous promise to generate novel data on cell biology along with
the required assessment of cell based-products that are applied in cardiac regeneration
strategies. In this perspective, we have described proteomics and glyco(proteo)mics and discuss
the impact of omics technologies on cardiac progenitor cells and pluripotent stem cell derived
cardiomyocytes biology cardiac regenerative therapies.
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Introduction

It is estimated that life expectancy worldwide
will continue to increase in the upcoming
decades, which may lead to a higher
prevalence of age-related diseases such as
cancer, neurodegenerative disorders and
cardiovascular diseases. Among all these
diseases, Acute Myocardial Infarction (AMI),
which belongs to one of the severe
cardiovascular medical conditions s
considered lethal and does not give much
time to recover. AMI or heart attack is known
to cause millions of deaths worldwide each
year. AMI causes serious damage to the
patient's health as it results in irreversible
myocardial tissue damage with loss of
cardiomyocytes (CMs) that are the main cell
type in the heart. Human body responds to
this ischemic attack and the affected area
becomes fibrotic with accumulation of

extracellular matrix proteins to compensate
the damage. Studies conducted on the
fibrotic tissue have revealed that such tissue
is stiffer with different electromechanical

properties in comparison to healthy
myocardium. Consequently, this leads to
impaired cardiac output. To overcome this
medical problem, several therapeutic
strategies have been suggested that include
medications, such as beta-blockers and
angiotensin converting enzyme inhibitors.
While these therapies have proven to be
successful in reducing mortality, they do not
allow for the complete restoration of normal
heart muscle function. This includes
preventing progression to chronic heart
failure that gives rise to with high mortality
rates. The only available treatment in such
scenario is heart transplantation or the use of
mechanical circulatory assist devices [1, 2].
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The recent concept of Advanced
Therapy Medicinal Products (ATMPs) for
cardio regenerative medicine has emerged
due to the increasing incidents of heart
failure and the scarcity of donor organs for
heart transplantation. ATMPs are considered
promising for heart disease treatments that
include cell transplantation-based strategies
with  cardiac progenitor cells (CPCs) or
pluripotent stem cell derived cardiomyocytes
(PSC-CMs). These treatment methodologies
have been used in a number of pre-clinical
and clinical trials. Further, it has been shown
that extracellular vesicles through
biomaterial-based delivery systems can also
preserve cardiac tissue after myocardial
infarction [1]. Especially, studies have
suggested that exosomal microRNAs can
play a key role in cardiac regeneration.
Despite these advances, there are still
challenges involving preclinical studies and
clinical trials that do not show consistent
physiological improvements and benefits
over standard pharmacological treatment
procedures. In other words, the goal is to
translate the potential of stem cells and other
ATMPs pre-clinical data into effective
treatments that are used in the clinical set. To
achieve this goal, there is a need for
analytical methods that permit a deep
characterization of such complex ATMPs
along with determining their potency and the
assessment of their mechanisms of action in
humans [3, 4].

Recent advances in omics
technologies have fulfiled the demand of
accurate and reliable analytical techniques
and software. These technologies have
allowed comprehensive and non-targeted
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investigation of these cell populations, which
enable accomplishing a more complete
molecular characterization and reveal key
mechanisms of action. The most well-known
omics technologies are proteomics and
glyco(proteo)mics  based tools. The
workflows of these omics’ tools are based on
state-of-the-art mass-spectrometry that have
paved way to some of the major
breakthroughs in cell biology and a detailed
assessment of cell based-products applied in
cardiac regeneration strategies. These omics
approaches are focused on the profiling of
protein and glycan signatures for
identification and characterization of cell
populations. This can potentially lead to the
discovery of pluripotency and differentiation
biomarkers along with providing new insight
into paracrine mechanisms and signaling
cascades that are involved in cardiac repair.
It is believed that the gained knowledge from
the omics-based characterization and
analysis would pave the way to a more
rational therapy design in ATMPs [1].

In this short perspective, we have
discussed recent trends and applications of
omics technologies in cardiac repair.

Cell-Based Therapies for Cardiac Repair

Researchers employed multiple cell types in
several pre-clinical studies and clinical trials
(Figure 1). These approaches were mostly
based on cells including skeletal
myoblasts, mesenchymal stem cells, bone
marrow mononuclear cells, and blood-
circulating progenitors [1]. While, several
studies showed most of these first-
generation cell-based therapies to be safe,
there were some data that showed poor
clinical effects. Researchers attributed the
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failures of these therapies to the cell
heterogeneity, lack of cell engraftment, and
also inability of cells to differentiate and
replace cardiac tissue. To overcome these
challenges, current research has focused on
second-generation cell-based therapies that
include CPCs and PSC-CMs, which give
more purified, homogenous and cardiac-
committed cell populations [5-9]. To this end,
several in-vitro and preclinical studies have
been conducted that have shown activation
of different populations of CPCs upon AMI. It
has been shown that these second-
generation cells proliferate and migrate to the
site of injury. Subsequently, these cells
release important paracrine factors and
microvesicles that are involved
in angiogenesis, vasculogenesis,
immunomodulation and CM cytoprotection
[10-12].

Researchers have also demonstrated
injection of human CPCs (hCPCs) in animal
models of AMI that have resulted in an
overall reduction of scar tissue size and
improvements in heart function. In these
studies, preclinical meta-analysis has been
done that has shown an estimated
improvement of 10.7% of heart left ejection
fraction [1]. These promising preclinical
results have initiated growth in research and
developments in rapid translation of
laboratory research into the clinic. This has
been achieved with different populations of
hCPCs in clinical trials that consist of both in
autologous and allogeneic settings. To this
end, pluripotent stem cells (PSCs) that
include embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs) have
shown tremendous promise in proliferative
potential. This also include the capacity to
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differentiate into all cells from the three
primary germ layers involving mesoderm,
ectoderm and endoderm and CMs. Studies
have clearly indicated ability of PSCs to
theoretically provide an unlimited number of
CMs that has made PSC-CMs. This is
potentially very exciting as a novel clinical

option for the replacement of the
endogenous CMs that are lost in AMI and
chronic heart failure patients (Figure 1) [1,
13-16]. However, analytical characterization
is the major issue/requirement that we will
discuss next.
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Figure 1: Schematic depiction of cell transplantation therapies that can be implemented for
cardiac repair. (A) First generation of cell therapies is shown for myocardium repair (SMs, EPCs,
BMMCs, Pericytes and MSCs). Second generation of cardiac committed cell populations
including CPCs and PSC-CMs is also shown. (B) A list of major challenges when using CPC
and PSC-CMs for clinical applications [Source: Biotechnology Advances (2021)].

Omics Technologies for Characterization
of Cells

Several studies have been conducted using
different omics methodologies (Figure 2) to
the characterization of CPC and PSC-CMs
[1]. These studies include gene expression
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profile employing transcriptomics,
epigenomic modifications by epigenomics,
analysis of nutrients and other small
molecules that arise from the cell's energy
metabolism by metabolomics, proteins using
proteomics and protein post translational
modifications by  employing  glycomics.
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Researchers have also employed complex These datasets are analyzed by using
multi-omics  approaches for analyzing different omics methodologies that include
different datasets and their interactions. bioinformatic processing tool and
These different types of omics platforms are deconvolute and perform  functional
known to generate big amounts of data. annotation of experimental data [17-21].
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Figure 2. (Top) Non-targeted proteomic approaches are shown that include biological samples
derived from tissues or cell cultures. High-performance liquid chromatography (HPLC) is
employed to generate peptide mixture. Peptides are ionized and separated by mass
spectrometry (MS). (Bottom) An overview is presented that shows translational potential
for proteomics and glyco(proteomics) tools in cardiac cells and cardiac cell-derived products
[Source: Biotechnology Advances (2021)].
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Researchers have shown Single Proteomics
by MS (SCoPE-MS) for quantification of
thousands of proteins in single cell samples.
This has enabled to
measure proteome fingerprints of single
cells and linkihg them to different
phenotypes. On the other hand,
glycoproteomics is  another form  of
proteomics, which is focused on identifying
glycosylated proteins and mapping their sites
of glycosylation. This helps to gain a better
understanding of the  function of
glycoproteins in biological or disease states.
One of the applications of glycoproteomics is
in genome-editing technologies that has
been shown to reduce glycosylation

complexity to facilitate glycoproteomic
analysis [1, 22].

It is believed that progress of cell
transplantation and cell-free clinical
therapies for heart regeneration will be
substantially moved forward by the
applications of proteomics and
glyco(proteo)mics methodologies. These
omics technologies are supposed to assist in
translation of these therapeutic approaches
to practical applications, for example in novel
biomarkers of heart disease (Figure 2) [1]. In
addition, studies based on proteomics and
glyco(proteo)mic are considered to play key
roles in developing strategies to better
characterize and interrogate PSC-CMs and
CPCs populations. This is expected to reveal
important insights that can help to elucidate
their membrane molecular landscape,
molecular processes regulating cardiac
differentiation. This also include integration
into the target tissue, and regenerative
molecular mechanisms of those cells and
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corresponding cell-derived products [1, 23-
25].

Conclusion and Outlook

It is believed that applications of omics
analytics technologies will help advance
analytical assays to identify stem cell
population subtypes. This can also help
understand the regenerative mechanisms of
action of stem cells and their impact on the
cardiac tissue. This understanding is critical
because it can enable researchers to better
define the quality requirements for an
accelerated clinical translation of stem-cell
based products in cardiac repair. With further
developments, proteomic and
glyco(proteo)mic profiling strategies are
supposed to become more sensitive,
accurate and high throughput
methodologies. This is expected to pave the
way to advanced characterization of stem
cells and stem cell derived products in
homeostasis and disease settings. To this
end, researchers have demonstrated
potential of untargeted high-throughput
proteomic and glyco(proteo)mic
characterization of cardiac populations and
cardiac cell derived products. Studies have
been conducted to reveal key molecular
pathways and proteomic/glycan signatures
that leverage strategies for
differentiation, purification and  application
of CPCs, PSC-CMs and/or cell derived
products in clinical applications. Future
studies are anticipated to focus on a better
definition of critical quality attributes of these
cells and cell-based products. This is
believed to lead to future regulatory
frameworks that could accelerate the clinical
applications of stem cell based cardiac repair
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and therapies based on omics
methodologies.
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