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From the Publisher’s Desk 

   Welcome to Biotechnology Kiosk!  

 

The March’ 2022 issue of Biotechnology Kiosk (BK) is now live for our readers, featuring our regular 

sections as well as cutting-edge articles on surface modifications of biomaterials and 3D tissue constructs. 

Additionally, we have our editor picks and a popular article. 

We hope our readers will enjoy delving into the latest research breakthroughs in various areas of 

medicine and biotechnology that are covered in this issue. We are eagerly awaiting your feedback, so 

please do not hesitate to share your thoughts with us. 

We strive to provide high-quality content to our readers, and your suggestions are always 

appreciated. We hope you enjoy reading this issue of Biotechnology Kiosk, and we look forward to 

hearing from you soon. 

 

       Dr. Megha Agrawal & Dr. Shyamasri Biswas.  

        Editors-in-Chief, Biotechnology Kiosk 
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Abstract 

Lately, there has been a great deal of emphasis on developing novel biomaterials for next generation 

biomedical technologies. Especially, research efforts have focused on biomaterials that meet the demand 

for precisely engineered three-dimensional structures. These research efforts seek to design advanced 

biomaterials that mimic the natural environments of tissues more closely, and thus enhance the functional 

performance of these materials. To this end, surface modification/functionalization of biomaterials is 

considered pivotal to achieve the goals. Recent progress in biomaterials fabrication techniques has shown 

huge promise for surface engineering of biomaterials leading to realization of devices that have complex 

surface geometries for various biomedical applications in the pharmaceutical and medical fields. These 

include next generation drug delivery, diagnosis and biosensors, to name a few. In this review, we have 

highlighted important surface modification processes that have been employed for surface engineering of 

biomaterials. Further, an overview of the cellular response of surface modified biomaterial is presented. 

We have also discussed precise engineering of three-dimensional surface modification of biomaterials by 

initiated chemical vapor deposition (i-CVD) method. Notable biomedical applications have been 

described. Finally, we have presented a brief future perspective. 
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Introduction 

The ability to control the interactions between 

biomaterials and living tissues is considered 

critical to optimize their therapeutic effects and 

disease diagnostics for clinical applications. 

However, it is quite difficult to gain such ability 

because most biomaterials including metals, 

polymers, hydrogels, carbons, and composites do 

not exhibit specific surface and bulk properties 

and desirable functions that are suitable for 

applications. It is essential that biomaterials have 

perfect properties for their effective interactions 

with surrounding tissues. To overcome the 

challenges, surface modification/engineering of 

biomaterials has been shown to play an important 

role in tailoring the surface of biomaterials. This 

surface engineering allows better adaptation to the 

physiological surroundings and deliver the 

required clinical performance [1,2,3].  

An important aspect in the rational design 

of biomaterials is to ensure surface modification 

of the biomedical devices without compromising 

their bulk characteristics for better control of the 

chemical and physical properties of the bioactive 

surfaces. Bulk properties are initially considered 

for a biomaterial’s suitability for an application. 

However, more important considerations are 

given to the physical aspects of the material 

surface as well as the chemistry that are critical to 

the function of many biomedical devices. Thus, 

physical and chemical surface modifications are of 

immense interest that seek to create a specific 

physical and chemical environment that offers a 

favorable cellular response in hard or soft tissue. 

For example, the physical environment including 

macro, micro, and even nanoscale features is 

considered in cases where tissue integration is 

desired. Creating a specific physical or chemical 

environment allows for cells to adhere, proliferate, 

and migrate [4].  

Surface characteristics such as topographic 

and geometric features are especially targeted to 

gain the ability to regulate the cellular response. 

This allows to create specially designed bio 

scaffolds with specific surface functionalities via 

surface modification. This can subsequently offer 

several advantages compared to flat surface 

including cell adhesion and cell fate decision [5-

14]. Pure chemical treatment of the material 

surface can result in oxideing/nitriding/carbiding a 

surface. It also includes surface functionalization 

as well as ion infusion. This can be achieved by 

single layer coatings, or multiple layers of 

coatings comprising different compositions [15-

17]. Recent advances in surface modification 

techniques have allowed researchers to modify 

biomaterials to achieve required chemical and 

physical properties. These include 

biocompatibilities, surface functionalities, and 

mechanical strength that are sought in the field of 

tissue engineering, regenerative medicine, and 

biomedical devices. To this end, a range of surface 
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engineering strategies are devised in order to 

achieve desired biocompatibility and other 

functionality such as antimicrobial performance 

in-situ. Several techniques have been employed 

that include plasma and chemical vapor 

deposition, atomic layer deposition, and electro-

chemical deposition, to name a few [4, 14, 15, 18-

24].  

In this review, we have described surface 

modified biomaterials and the associated cellular 

response and strategies for surface 

modification/engineering. While several surface 

engineering strategies have been discussed in the 

literature, our emphasis is on the solvent-free 

processes especially the emerging i-CVD method 

for atomic scale engineering and its applications.  

Figure 1:  Schematic depiction of surface modified biomaterial and the cellular responses that emerge 

due to the modification [Source:  Int. J. Mol. Sci. (2021)]. 

 

Surface Modified Biomaterial and the 

Associated Cellular Responses 

Studies have shown that cellular responses such as 

cell adhesion, proliferation, differentiation and 

migration are dependent on surface 

microstructural topography along with the surface 

chemistry including surface interaction at the 

biomaterial–cell interface and surface 

energy/wettability [25-28]. Especially, changes in 

the biointerface have been shown to enable 

triggering specific cell signaling that can result in 

different cellular responses. Therefore, a major 

goal of the surface modification of biomaterials 

involves pathways that enable interaction with the 

surrounding tissues and biological fluids and elicit 

desired cellular responses (Figure 1) [20]. 
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Researchers have shown that performance of 

biomaterials in living tissues can be altered 

depending on the types of biomolecule and 

bioactive agents along with properties of 

biomaterial surfaces that are applied for surface 

functionalization. Previous studies on surface 

modification effects have correlated the cellular 

behavior with the changes in surface chemistry, 

surface charge, hydrophilicity, surface 

topography, and softness and also stiffness of bio-

materials. With respect to the connection of 

surface chemistry with wettability and surface 

charge, it has been shown that modified surface 

chemistry affects cell adhesion, cell shape, cell 

proliferation, and differentiation. In addition, 

surface chemistry has been shown to strongly 

affect materials’ biocompatibility as well as 

immunogenicity [20].  

Studies have highlighted responsiveness of 

cells to the topographical structure of the 

underlying biomaterial surface. Accordingly, cells 

have been shown to modulate their alignment and 

orientation along the surface. The main 

components of surface topography include surface 

roughness and surface patterns that determine. The 

emphasis has been on unique properties of surface 

topography patterns such as high stability, cost-

effective manufacture, and easy controllability for 

controlling cell function and tissue regeneration. 

With respect to the effects of surface charges, 

researchers have shown different mechanisms for 

solid surfaces to make them neutrally, positively, 

and negatively charged for different functions. For 

examples, more cells can be attached to the 

positively charged surface compared to the 

negatively and neutrally charged surfaces. 

Furthermore, it has been shown that the effects of 

surface charge on cellular responses depend on the 

composition of biomaterials, cell type as well as 

tissue microenvironment. Regarding surface 

wettability and its effects, it is known that 

wettability features such as hydrophilicity and 

hydrophobicity correspond to the adhesive force 

between the liquid and solid material surface that 

results in the spreading of the liquid across a solid 

surface. Several studies have documented that 

while cells are typically attached and proliferated 

on a hydrophilic surface, proteins tend to bind onto 

hydrophobic surfaces. Last but not the least is the 

consideration on surface energy and cellular 

responses. Surface energy is recognized as one of 

the decisive factors for surface wettability of 

biomaterials. For example, Surfaces with low 

surface free energy have been shown to be less 

adhesive than those with high surface free energy. 

Especially for tissue engineering applications, it 

has been sown that biomaterials with total surface 

energies of about 100–129 erg cm−2 are more 

suitable for tissue regeneration. Further, the non-

optimal range of total surface energies is thought 

to be within about 16–20 erg cm−2 to support cell 

adhesion, proliferation, and differentiation. The 
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stiffnesses of underlying substrate and local 

extracellular matrix have also been considered to 

be guiding factors for cell morphology and fate 

decision [20, 29, 30]. 

Conventional and Emerging Surface 

Engineering Strategies for Biomaterials 

From a purely materials perspective, surface 

engineering is often considered to overcome the 

challenges of loss of quality of a material due to 

fatigue/fracture, wear and destruction as a result of 

mechanical sliding interaction and corrosion or 

decorative defects. Previous studies showed 

surface engineering strategies helpful in inducing 

surface tolerant properties to combat detrimental 

environmental conditions or external forces [31-

33]. With respect to biomaterials, surface 

engineering has been shown to impart cell 

adhesion, passage, growth, differentiation and also 

functionality. Surface engineering can also 

influence roughness that can be leveraged to 

control the effectiveness of coating [20, 34, 35].  

Figure 2: Commonly used conventional and emerging surface engineering techniques are listed that 

include coating, lithography, laser treatment, hydrothermal treatment, plasma spraying, plasma 

immersion ion deposition, radio frequency magnetron sputtering technique, chemical vapor deposition, 

atomic layer deposition, electrospray deposition, and electro-spinning deposition etc. Atomic scale 

engineering techniques are also described [Source:  Int. J. Mol. Sci. (2021)]. 

 

Several nanofabrication and microfabrication 

techniques for applying surface topography have 

been considered that include electron beam 

lithography or photolithography; replica casting or 

molding; self-assembling systems; particle 

synthesis; microcontact printing; sandblasting; 
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electrospinning; and chemical etching etc. For 

simplicity, surface engineering methods have been 

divided in two categories. These are conventional 

surface engineering methods that deal with 

coating, bioactive coating, plasma spray coating, 

hydrothermal, lithography, shot peening, and 

electrophoretic deposition and emerging surface 

engineering methods such as laser treatment, robot 

laser treatment, electrospinning, electrospray, 

additive manufacturing, and radio frequency 

magnetron sputtering technique) (Figure 2) [20].   

Lately, researchers have paid much more 

attention to emerging surface modification 

methods that are considered more advanced and 

innovative techniques. Emerging methods are 

considered advantageous because they can be 

employed for obtaining improved 

biocompatibility that is otherwise very difficult to 

achieve by conventional modifying techniques. 

Most recent advances point towards machine 

learning and atomic scale engineering techniques 

[36]. Machine learning methods are rather in a 

very nascent stage, where a computer learns the 

information. This subsequently provides data and 

the system functions according to the data. On the 

other hand, atomic scale surface engineering is a 

series of methods that are considered most 

promising emerging techniques to alter the surface 

topography at the atomic and molecular scale 

(<100 nm) (Figure 2) [20]. These techniques are 

currently driving the biomaterial research that 

deals with fabricating a material with improved 

understanding of surface interactions by 

modifying internal components. Further, from 

pure applications point of view, atomic scale 

engineering can be leveraged for designing a 

commercial product with excellent antimicrobial 

and other biomedical functional properties for 

applications in advanced pharmaceutics and 

medicine [37-42]. 

In the following sections, we will describe 

the main process of initiated chemical vapor 

deposition ‘i-CVD’ for the surface modification of 

biomaterials along with notable applications of i-

CVD. 

Initiated Chemical Vapor Deposition:  Atomic 

Scale Engineering of Three-Dimensional 

Surface Modification of Biomaterials  

Atomic-scale engineering has recently emerged 

very promising for three-dimensional (3D) surface 

modification of biomaterials. Techniques such as 

chemical vapor deposition, atomic layer etching, 

plasma immersion ion deposition, and atomic 

layer deposition correspond to the subsection of 

emerging technology that has been shown superior 

over conventional methods for improved control 

and flexibility at finer length scales. Recent 

advances in technologies have shown promise to 

meet the demand for better control of biomaterial 

surfaces.  These advances are aimed at the atomic 

scale and molecular scale engineering while 

incorporating functional bio-active agents for 
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enhanced in-situ performance of new biomedical 

devices such as implants. Several studies have 

used functional agents that include synthetic 

materials such as monolithic ZnO, quaternary 

ammonium salts, silver nanoclusters, titanium 

dioxide, and graphene and also natural materials, 

for example, chitosan, totarol, botanical extracts, 

and nisin for atomic scale engineering [43-47]. 

Recently, iCVD has emerged as a top-of-

the-line have technique for atomic scale 

engineering and as a damage-free method for 

sensitive biomaterials to modify the surface of 

biomaterials and various biomedical devices in a 

controlled fashion. The technique i-CVD is 

considered highly beneficial for the conformal 

deposition of various functional biopolymer films. 

This deposition can be done onto many kinds of 

bio-surfaces without restrictions on the substrate 

material or geometry, which is otherwise not 

possible to achieve by conventional solution-

based surface functionalization methods. It has 

been shown that with proper structural design, it is 

possible to achieve required functionality to the 

biomaterial surfaces by the functional polymer 

thin film via i-CVD. Such functionality can be 

achieved while maintaining the fine structure 

thereon [48]. 

The technique iCVD offers a number of 

advantages that include the mild deposition 

condition and also the deposition process that can 

be proceeded in solvent-free and near-room 

temperature condition. In a typical iCVD process, 

the initiator and monomers are first vaporized and 

introduced simultaneously into the vapor phase 

reactor that is maintained under vacuum. 

Subsequently, the injected monomers are 

adsorbed onto the surface of substrates, while the 

initiators decomposed thermally via hot filament 

to form radicals. This results in triggering free-

radical polymerization reaction at the substrate 

surface that is maintained near at room 

temperature (less than 50oC). This finally leads to 

the biopolymer or biomaterial film growth from 

the surface (Figure 3) [48].  

The surface modification techniques based 

on iCVD process have been shown to be capable 

of engineering the surface of the non-conventional 

substrates as well, which allows for the rational 

design of biomaterial platforms. This 

subsequently enables to control the 

adsorption/immobilization of bioactive molecules 

to broaden the utility of biomaterials for a wide 

range of advanced technical approaches for 

biomedical applications. Therefore, the 

developments in atomic scale surface engineering 

using iCVD have proven to be very useful in the 

field of biomedical applications by realizing 

conformal coating of biological and medical 

devices have are comprised of a range of miniature 

structures [48]. 
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Figure 3: (i-v) Schematic depiction of iCVD technique for surface modification of three-dimensional 

structures including fabric, hydrogel, sponge, membrane, and electrospun fiber. It shows vaporized 

monomers and initiators that are injected into the iCVD reaction chamber along with the injected 

initiators that are subsequently thermally decomposed into the radicals. Further, the injected monomers 

are then adsorbed onto the surface of the structured substrate and the process then allows the radicals to 

be transferred to the adsorbed monomers, which triggers free-radical polymerization reaction and the 

subsequent growth of biopolymer film from the surface [Source:  Biotechnol Bioproc E (2021)]. 

 

i-CVD Technique for Controlled Drug Delivery 

There have been significant research efforts for 

safe drug delivery through mucosae. Such drug 

delivery offers advantageous characteristics 

including accurate dose control and the avoidance 

of premature metabolism of vulnerable drugs by 

oral administration. However, there is a challenge 

involving body fluid in mucosae that may dissolve 

the drug and releasing it to unwanted directions 

[49-51].  

To address the challenge of unwanted 

dissolving of drug, researchers showed the 

promise of iCVD technique to control the drug 

delivery rate and direction to the target region by 

area selective incorporation of surface 

functionality. They used area-selective 

functionalization of membrane to provide Janus 

property that exhibited a great potential for drug 

delivery applications. To this end, a Janus patch 

was developed for mono-directional drug 
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delivery. In this process, a polyester fabric was 

coated with poly 

(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

heptadecafluorodecyl methacrylate) (pHFDMA) 

film by iCVD process (Figure 4) [48, 52]. 

Subsequently, base-catalyzed hydrolysis was 

applied to one side of the substrate that rendered 

hydrophilic surface containing carboxylic acid 

residues. Further, while the hydrophilic surface 

allowed the coating of hydrogel incorporated with 

resveratrol that enhanced the adhesion of patch to 

mucosa, the hydrophobic surface prevented 

wetting by body fluids. It was shown in this study 

that the developed Janus patch enabled controlling 

the exact dose with intended directional drug 

release without allowing the water penetration. 

Further, researchers showed the applicability of 

this approach to various kinds of porous materials 

such as Nylon mesh or paper and not restricted to 

polyester fabric only [48, 52]. 

 

Surface-Modified Porous Sponge for Isolating 

Foodborne Pathogen   

It is widely recognized that rapid and efficient 

detection of pathogenic bacteria from food is 

critically important to prevent epidemic food 

poisoning. However, the challenges lie in the 

isolation of pathogenic bacteria from spoiled food, 

which is further hampered by the lack of proper 

cell cultivation and/or isolation methods [53, 54]. 

Conventional methods suffer from complex, time-

consuming culturing steps that result in low 

scalability, and high operation cost. To overcome 

these challenges, researchers demonstrated an 

alternative approach for the isolation of 

pathogenic bacteria directly from food using a 

surface-modified, highly porous sponge via iCVD 

process (Figure 5) [55]. In this study, a 

hydrophobic polymer, poly(2,4,6,8-tetravinyl-

2,4,6,8-tetramethyl cyclotetra-siloxane) (pV4D4) 

was deposited conformally by iCVD on 

amphiphilic three-dimensional (3D) melamine 

sponge. This was done to incorporate 

hydrophobicity as well as oleophilicity to the 

porous sponge surface for absorbing oil 

component selectively from food extracts. 

Researchers demonstrated that the surface-

modified sponge was capable of the isolation of 

Escherichia coli O157:H7 (E. coli O157:H7) from 

heterogeneous mixture with oil/water/food 

particles with high efficiency compared to 

artificial model system. The surface-modified 

sponge developed could pave the way for the 

development of a novel biotechnology platform 

for oil/water separation and isolation of foodborne 

pathogens directly from heterogeneous mixture 

that could enhance the efficiency of molecular 

diagnostics [55]. 
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Figure 4: A schematic illustration that shows the fabrication steps of gelatin methacrylate (GelMA) 

hydrogel-immobilized Janus membrane and in-vivo skin regeneration [Source:  Adv. Healthcare Mater 

(2017)].

 

 

Figure 5:  The application of iCVD is shown for conformal coating of pV4D4 on 3D melamine sponge 

for isolating food borne pathogen [Source:  Food Chemistry (2019)]. 

 

Modification of Microchip for DNA 

Extraction:  Enhanced Capturing Efficiency 

for Point-of-Care Molecular Diagnostics 

It has been shown that nucleic acid (NA) 

extraction and purification corresponds to one of 

the most important steps for NA-based molecular 

diagnosis. However, the conventional methods 

have severe limitations due to many issues that 

include long processing time, complicated steps, 

requirement of trained personnel and potential 
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inhibition caused by chaotropic agents and/ or 

residual reagents [56-59]. To address these 

challenges, researchers demonstrated a surface-

modified NA extraction microchip (SNC) by 

introducing poly(2-dimethylaminomethyl 

styrene) (pDMAMS) film engaged directly on the 

microchip surface via iCVD process (Figure 6) 

[60]. 

 

 

Figure 6:  Development of iCVD enabled surface-modified nucleic acid (NA) extraction microchip for 

point-of-care molecular diagnostics [Source:  Macromol. Res. (2020)]. 

 

Conclusion & Future Perspective 

We have described surface 

modification/engineering methods that are 

increasingly being employed in three-dimensional 

surface modification of clinically grade 

biomaterials. Surface engineering of biomaterials 

is considered pivotal in preserving the functional 

attributes of biomaterial. Studies have shown that 

it can be leveraged to enhance its effectiveness and 

sustainability by adding a functional layer to the 

surface. In addition, changing the surface texture 

is another viable route for effective surface 

modification of biomaterials. It has been shown 

that such surface engineering could help prevent 

corrosion and erosion and also promotes 

osseointegration while enhancing 

biocompatibility especially in tissue engineering 

applications. In addition, surface modification has 

been shown to induce self-healing property, resists 

friction and wear, and improve cell adhesion while 
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reducing thrombogenicity that results in desired 

transport characteristics, and minimizes the risk of 

microbial infections.  

Recent research advances in initiated 

chemical vapor deposition (i-CVD) for 

biofunctionalization of biopolymer thin films have 

shown tremendous promise in pharmaceutical and 

medical fields. Several studies have shown 

notable advances in the field of i-CVD biopolymer 

films on different substrate materials that include 

immobilization of bioactive molecules, site-

specific conjugation, and facile control of physio-

chemical property of implants and biomedical 

devices. Studies have also demonstrated the 

deposition of biopolymeric thin films in vapor 

phase monomers that can substantially facilitate 

adjusting the polymer compositions. This is 

believed to be a hallmark of i-CVD technique that 

allows precise topological and chemical control of 

medical implants with complex three-dimensional 

shapes. However, the development of i-CVD 

functional polymer coatings for various medical 

devices is still considered in its early stage. In 

future studies, i-CVD technique is expected to 

make significant contributions in the design and 

production of superior biological and medical 

devices. This could be achieved by providing 

substrate-independent polymer coatings with 

nondestructive way. We anticipate that future 

studies will also include further development and 

optimization of i-CVD technique that will allow 

mass production and quality control of polymer-

coated medical device for seamless transition of 

laboratory investigation to clinical practice. To 

this end, in term of substrate-independent polymer 

coatings with nondestructive way, iCVD 

technique is expected to make more significant 

contributions in the design and production of 

advanced biological and medical devices.  

Another area of future interest is in-depth 

biological assessment of polymer-coated surface 

that is required for direct surface contact of 

cell/tissue. This is to gain new insights into the 

biomolecular mechanism underlying the series of 

cellular response on the functional polymer 

surface. This will lead to a deeper investigation on 

the interactions of i-CVD polymer-functionalized 

surface and cell/tissue surface that will provide 

great advantages for the rational design of the 

surface chemistry and develop elaborate medical 

devices responding to unmet medical needs. It is 

believed that compared to conventional solution-

based processes, the advantageous i-CVD process 

will help overcome the technical challenges that 

are often faced in nonclinical and clinical pre-

market assessments in both device manufacture 

and functional performance.  

With respect to next-generation bio-

scaffold designs, the application of biomaterials 

may focus on addressing concerns with respect to 

their biodegradability and cell toxicity. This could 

be a major goal especially in view of the still 
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unknown prolonged in-vivo cytotoxicity, 

effectiveness, and fate of surface engineered 

scaffolds. Thus, it may shed light on 

understanding the surface properties of scaffolds 

along with their effects on cellular behavior. This 

could help overcome the technical barriers toward 

their design of better scaffolds. In addition, future 

studies could involve surface modification of 

scaffolds by bioactive molecules. This could be 

achieved by creating substrates with desired 

properties that could pave the way to future 

breakthroughs involving instructing cellular 

behavior in terms of attachment, proliferation, and 

differentiation. In summary, it would be prudent to 

focus on research that enables greater insights of 

long-term in-vivo fate of surface engineered 

biomaterials that could be leveraged to further 

expand this exciting field for transition from 

laboratory to safe clinical applications. 
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Abstract 

In view of the very expensive modern healthcare system, sudden loss or failure of organs and tissues could 

pose a very difficult and costly medical problem to patients. Further, the limited supply of organs globally 

that a patient can afford for replacement in the event of an organ failure makes the problem even more 

challenging and complicated. These medical and healthcare challenges have triggered research and 

developments into tissue engineering to advance the field of regenerative medicine. Especially, the 

research focus has been on the design, development and optimization of a cell-scaffold-microenvironment 

to promote the regeneration of various types of tissue including skin, cartilage, bone, tendon and cardiac 

tissue, to name a few. Studies have been undertaken to produce functional three-dimensional (3D) tissue 

substitutes or constructs that are based on bio scaffolds from the ground up. To this end, bioprinting 

strategies have been considered for fabrication of complex 3D functional living tissues or artificial organs. 

Here, we describe some notable advances in laser bioprinting enabled tissue engineering, which is a 

rapidly emerging field in 3D bio fabrication technology for applications in regenerative medicine.  
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Introduction 

The sudden loss or failure of organs and tissues is 

a serious medical condition. Failure of organs is 

widely recognized as a difficult and costly 

problem in modern healthcare. Further, the 

patient’s problem becomes even more challenging 

in view of the limited supply of organs globally.  

To address these issues, there has been a steady 

growth of research on tissue engineering that 

especially involves the fabrication and design of 

3-dimensional (3D) artificial scaffolds and a cell-

scaffold-microenvironment that mimics human 

tissue for the development of artificial organs. The 

goal is to promote the regeneration of various 

types of tissue including skin, liver, cartilage, 

bone, tendon and cardiac tissue, to name a few [1-

5]. 

3D tissue constructs are usually built by a 

combination of biocompatible and bioactive 

biomaterials with/or without cells and bioactive 

factors. Such constructs are developed from the 

ground up with the aim to replace or sustain the 

regeneration of tissues. Studies have shown 

scaffolds as the key element for tissue 

regeneration, which can be leveraged to provide 

the necessary mechanical support and a physical 

structure for the transplanted cells to attach and 

grow. This can be achieved together with 

maintaining their physiological functions. To 

obtain best performance, the key parameters to 

control are cell density along with cell spatial 3D 

organization that govern cell behavior and fate [6-

9]. With respect to scaffolds, a bone scaffold for 

tissue engineering is of enormous interest due to 

the ever-growing demand of new biomedical 

implants. To be able to generate fully functional 

properties, bone scaffolds need to have favorable 

biocompatibility or cytocompatibility. This is 

essential to provide a surface for cells that can 

adhere, proliferate, differentiate and secrete 

extracellular matrix (ECM). Further, it has been 

shown that cell adhesion and migration, 

vascularization and new tissue ingrowth are 

influenced by pore size and interconnectivity.  

All these factors imply that a high-

performance scaffold must simultaneously 

support the growth of different cell types and 

tissues, each with specific mechanical properties, 

chemical gradients, cell populations, and 

geometric structures. Several conventional 

fabrication methods including electrospinning, 

fiber deposition, freeze-drying, gas foaming, and 

salt leaching have been considered for 

manufacturing 3D scaffolds.  

However, these methods have limitations 

that do not allow precise control of internal 

structural features and topology. Especially, 

current traditional methods have complex design 

constraints that restrict the applicability of these 

methods particularly in serious medical conditions 

that include repairing clinically relevant injuries, 

organs, and other complex tissues. This has 
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motivated researchers to develop new techniques 

for the accurate fabrication of multifunctional 

scaffolds [1, 10-14].  

Bioprinting is an emerging technique for 

3D tissue constructs from the ground up. The 

technique employs biomaterials, cells, and/or 

bioink to fabricate prospective scaffolds to mirror 

the structural, compositional, and functional 

aspects of various human tissues. Several 

bioprinting methods including inkjet-based 

bioprinting, pressure-assisted bioprinting, and 

laser-assisted bioprinting have been employed for 

applications in regenerative medicine. The 

fabricated scaffolds have been characterized based 

on biocompatibility, cellular microenvironment, 

cell proliferation, vitality, and morphology [15].   

Among other bioprinting methods, laser 

bioprinting is considered most promising for 3D 

tissue engineering and for fabrication of 

multifunctional bioscaffolds. Here, we will 

present some notable advances in laser bioprinting 

for 3D tissue constructs for applications in 

regenerative medicine.    

 

Bioprinting Strategies  

Recent advances in biofabrication have led to the 

development of Bioprinting, which is a rapidly 

emerging 3D biofabrication technology. 

Bioprinting is employed to precisely dispense cell-

laden biomaterials for the construction of complex 

3D functional living tissues or artificial organs. 

Figure 1 shows a typical 3D printing technical 

route, which is aided by 3D imaging software [1]. 

3D bioprinting is considered a transformative 

technology because it allows more accurate 

personalized manufacturing of biomedical devices 

that need to be created to the patient's own 

specifications. In addition, bioprinting technology 

has a vast potential in a range of other applications 

that include creating more accurate non-biologic 

and biologic research models for research 

purposes, for example, spatial and temporal 

trauma in cancer research [1].  

Recent studies have suggested that the 

design and manufacturing of living tissues and 

organs by 3D bioprinting could be leveraged in 

future to be implanted into patients safely with no 

side effects. In view of the enormous promise of 

bioprinting, researchers across the globe are 

currently exploring this technique to pattern cells 

or fabricate several different tissues and a whole 

host of functional organs, for example, blood 

vessels or cardiac patches, just to name a few. 

Bioprinting strategies are still in its early stages of 

developments. It is believed that with further 

advances, the versatile bioprinting may address 

the issues of growing organ shortage in the world 

by providing a high-throughput method for cell 

patterning at the micrometer scale for broad 

biomedical engineering applications. However, 

current approaches have to overcome technical 

challenges that include high-resolution cell 
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deposition, controlled cell distributions, 

vascularization, and innervation within complex 

3D construct tissues to achieve the desired 

potential of 3D bioprinting [16-21]. 

 

Figure 1: A typical workflow is shown for the general process of 3D bioprinting [Source:  Journal of 

Translational Medicine (2016)].  
 

Laser Assisted Bioprinting: A Potential Game 

Changing Biofabrication Technology for 3D 

Tissue Constructs  

To address the technical challenges in 3D 

bioprinting, recent developments in laser based 

bioprinting has been shown very promising in 3D 

tissue constructs from the ground up. Laser based 

3D printing allows fabrication of tissue-like 

structures that have the exact physiological 

functionality of their native counterparts. In 

addition, it allows printing cells and liquid 

materials with a cell- or picoliter-level resolution 

that is believed to be a game changer in 3D tissue 

engineering and fabrication of artificial organs. 

Further, this technology can enable study on 

cellular interactions and to fabricate cell‐based 

biosensors due to its capacity to spatially control 

cell position and cell density. It has additional 

advantages such as automation, reproducibility, 

and high throughput. Thus, it makes the process 

compatible with the industrial scale fabrication of 

3D constructs of physiologically relevant sizes 

[22, 23].  

The laser based bioprinting process is 

essentially a direct-write method that allows 

droplet deposition of cells or biomaterials within a 

fluidic phase. With respect to the pace of the 

process, a MHz range speed can be obtained, 
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where a near infrared pulsed laser beam is 

employed that is coupled to a scanning mirror and 

a focusing system. Further, this process involves a 

transparent substrate, which is usually coated with 

a thin layer of laser-absorbing material along with 

a second thicker layer of biomaterial that is made 

of hydrogel with embedded cells to be printed [24, 

25]. Laser pulses are then focused into the laser-

absorbing layer (Figure 2) [26]. This step is often 

referred to Dynamic-Release-Layer (DRL), which 

corresponds to the underlying process of 

vaporization in the focal region that generate a 

vapor bubble. This bubble then expands by vapor 

pressure that subsequently propels the adjacent 

biomaterial forward. This eventually helps it to get 

deposited as a droplet at a predefined position on 

a collector slide. Researchers have shown that the 

high energy created by the incidence of the laser 

beam can create a cavitation that can eventually 

propel a microdroplet, containing cells, towards 

the receiving substrate. Such a configuration can 

be a 2D support or an exposed 3D in-vivo tissue 

[24-26]. 

 

Figure 2:   Schematic depiction of different parts of laser assisted bioprinting along with various tissue 

engineering applications of fabricated different 3D tissue constructs [Source:  Med Lasers (2021)]. 
 

Another advantage of laser based bioprinting is its 

nozzle-free hardware. This allows avoiding the 

problem of cell clogging and thus helps 

overcoming the issues encountered in other 

bioprinting approaches. This can be achieved 

while providing the desired control on the density 

and microscale distribution of cells along with 

their viability and to attain higher speeds of 

deposition. Additionally, the technology enables 

an unprecedented printing precision at the 

micrometer scale. This provides the opportunity to 

achieve an ultimate control over cell organization 

for 3D tissue constructs from the ground up for a 

number of personalized medicine and healthcare 

applications [25]. In the following sections, we 

will take a look at some of the important 

applications of laser assisted 3D bioprinting.  
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Guided Regeneration of In-Vivo Bone Tissue by 

Laser Bioprinting of Mesenchymal Stromal 

Cells   

Mesenchymal Stromal Cells ‘MSCs’ are known as 

multipotent progenitor cells that have the capacity 

to differentiate into a variety of cell types 

including osteoblasts, adipocytes, chondrocytes, 

tenocytes and skeletal myocytes. Additionally, 

these cells also have immunomodulatory 

properties that can be purified from different 

tissues (e.g. bone marrow, adipose tissue, 

umbilical cord). Studies have shown that MSCs 

have the capacity to secrete protective biological 

factors. This attribute makes them as one of the 

most suitable cell sources for tissue regeneration 

approaches [27, 28].  

 

Figure 3: Laser assisted bioprinting for in-situ printing of mesenchymal stromal cells for in-vivo bone 

regeneration applications (it shows a ring (A1) with and a disk (B1) along with representative 

fluorescence images of ring (A2) and disk (B2) printed cells inside the calvaria defect in mice) [Source:  

Scientific Reports, (2017)]. 
 

In a notable study, researchers combined the 

printing of hydroxyapatite (HA) with MSCs, D1 

cell line and investigated the impact of two 

different cell-printing geometries that have 

distinctive cellular repartitions (disc or ring) on 

bone repair capabilities [25]. Subsequently, two 

HA-collagen disks were printed before and after 

the cellularized ink printing in order to confine the 

printed cell spots to the calvaria defect. This was 

also done to provide an osteoconductive matrix to 

the printed cells. Figure 3 shows a schematic 

representation of the in-vivo laser based 

bioprinting geometries that were tested with a ring 

(A1) with external and internal diameter of 3 and 

2.1 mm, respectively, and a disk (B1) with 2 mm 

diameter [25]. Two layers of HA-collagen ink 
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were printed underneath and over the cellularized 

ink layer in this study that employed two 

geometries. Figure 3 shows representative 

fluorescence images of ring (A2) and disk (B2) 

printed tomato-positive (D1) cells inside the 

calvaria defect in mice that were obtained 

immediately after printing. Further, researchers 

observed a significant increase in terms of bone 

formation in the case of HA collagen material and 

with D1 cells in a disk geometry post printing. 

Thus, a key finding was reported that involved 

testing different cell printing geometries and 

different cellular arrangements that impacted bone 

tissue regeneration differently. This work paves 

the way to new avenues on the development of in-

situ laser bioprinting strategies for the building of 

3D tissue constructs from the ground up [25].  

Laser Bioprinting for Cardiovascular 

Repair/Regeneration and Pharmacological 

Applications  

Cardiovascular disease (CVD) is thought to be a 

major cause of morbidity and mortality 

worldwide. CVD is associated with serious 

medical conditions such as congenital heart 

disease, acute coronary syndrome, hypertension, 

and arrhythmias that emanate from the faulty 

cardiovascular system. This fatal disease account 

for >17.5 million deaths per year, and that is 

estimated to increase to 23.6 million by 2030 [29-

33]. To gain insights into CVD, it is critical to 

understand the cardiovascular system, which is a 

very important part of human body that includes 

the heart, blood vessels (arteries, veins, 

arteriovenous shunts, and capillaries), and 

lymphatic vessels. It is known that the 

cardiovascular system corresponds to a closed 

loop transport system that carries blood and lymph 

for circulation throughout the body. Laser based 

bioprinting for cardiovascular repair and 

regeneration is currently of huge interest that 

offers hope in providing new solutions to these 

very challenging and complicated problems in 

future healthcare sector dealing with CVD [33].  

While the bioprinting technique for 

cardiac tissue constructs is still in its early stages, 

It is generally believed that the laser based 3D 

bioprinting would be a feasible approach in the 

future to produce a robust, and physiologically 

relevant, cardiac model. This could be realized by 

replicating in-vivo tissue composition, geometry, 

and complexity of the cardiovascular system, in 

general. 3D bioprinting can be leveraged to create 

complicated cardiovascular implants with 

biomimetic features that are capable of 

recapitulating both the native physiochemical and 

biomechanical characteristics of the 

cardiovascular system. Ongoing studies on micro-

physiological models of the 3D bioprinted heart 

have focused mostly on generating the 

myocardium, valve, and vessels. Additionally, 

researchers are also focusing on the design and 

development of a bioartifical heart valve that 
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mimics the structural and the functional aspect of 

a native valve for use as an implantable device. To 

achieve the goals, one viable clinically attractive 

approach being considered is in-situ heart valve 

tissue engineering that employs cell-free 

synthetic, biodegradable scaffolds to create living 

valves right inside the heart of a patient. Figure 4 

schematically shows notable advances in 3D 

bioprinting cardiovascular tissues/models for 

regeneration and pharmacological modeling 

applications [33]. 

 

Figure 4: Schematic diagram showing techniques of 3D cardiovascular bioprinting along with 

bioengineering methods, and bio-applications in regenerative medicine and pharmacology [Source: Adv. 

Drug Deliv. Rev. (2018)].   

In an earlier study, researchers showed that 

mesenchymal stem cells (MSC) could inhibit 

apoptosis of endothelial cells in hypoxic 

condition, increase their survival, and stimulate 

the angiogenesis process. To investigate in detail, 

researchers employed Laser-Induced-Forward-

Transfer (LIFT) cell printing technique and 

prepared a cardiac patch seeded with human 

umbilical vein endothelial cells (HUVEC) and 

human MSC (hMSC) in a defined pattern for 

cardiac regeneration (Figure 5) [8].
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Figure 5: (A) Schematic representation of laser-based cell printing showing cardiac patch manufacturing.   

(B) Fluorescent image of micropatterned hMSCs (red) and hUVECs (green). (C) Cardiac patch implanted 

into rat myocardium [Source:  Biomaterials (2011)]. 
 

In their study, researchers seeded HUVEC and 

hMSC in a defined pattern on a Polyester urethane 

urea (PEUU) cardiac patch. Subsequently, they 

cultivated cardiac patches in-vitro and 

transplanted in-vivo to the infarcted zone of rat 

hearts. It was demonstrated that LIFT-derived cell 

seeding pattern modified growth characteristics of 

co-cultured HUVEC and hMSC. This resulted in 

an increased vessel formation. In this study, major 

functional improvement of infarcted hearts was 

found following transplantation of a LIFT-tissue 

engineered cardiac patch. Researchers concluded 

that LIFT-based Tissue Engineering of cardiac 

patches for the treatment of myocardial infarction 

might improve wound healing and functional 

preservation [34]. 

 

Laser Bioprinting of Skin Constructs:  Cure for 

Difficult-To-Repair Extensive Burns and Full-

Thickness Skin Wounds  

It is widely recognized that repairing extensive 

burns and full-thickness skin wounds is a 

significant medical challenge. This is especially 

true considering deep damage to the skin that 

happens in these serious medical conditions. The 

existing skin graft technology based on 

Autologous Split-thickness Skin Graft (ASSG) is 

limited for applications due to the shortage of 
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donor skin tissues, which is a serious problem. 

Skin bioprinting is considered very promising that 

may provide a novel alternative to ASSG therapy. 

It is believed that laser assisted bioprinting can 

address this problem that can provide a potential 

solution. The main advantage of employing laser-

based skin bioprinting is the availability of skin 

constructs fabricated by using in-vitro expanded 

cells from skin biopsy that would mitigate the 

problem of shortage of donor sites encountered in 

ASSG. 

Studies have suggested the possibility of 

bioprinting of skin tissue constructs that can lead 

to the development of skin equivalents for wound 

healing therapy. To this end, researchers have 

fabricated skin constructs using biomaterial 

scaffolds with or without cells to create skin 

tissues that are suitable for transplantation. In this 

process, skin tissues are usually collected from 

patients in skin bioprinting by skin biopsy. This 

can be then cultured in-vitro to obtain enough 

number of cells. Subsequently, cultured skin cells 

are mixed with biomaterials and then delivered to 

a 3D bioprinter for fabrication of customized skin 

as prescribed by the patient’s specific 

requirements [34-37].  

Ongoing studies have focused on to 

address technological challenges for the 

development of bio-mimetic functional skin for 

clinical applications. For example, a related study 

conducted on laser based bioprinting of skin tissue 

demonstrated direct printing of amniotic fluid-

derived stem cells (AFSCs) onto full-thickness 

skin wounds (2 cm × 2 cm) of nu/nu mice using a 

pressure-driven, computer controlled bioprinting 

device (Figure 6) [38].  

In this study, AFSCs and bone marrow-

derived mesenchymal stem cells were suspended 

in fibrin-collagen gel and mixed with the thrombin 

solution (a crosslinking agent) that were then 

printed onto the wound site. Researchers then 

employed the bioprinter that was used to deposit 

two layers of a fibrin-collagen gel by depositing a 

layer of thrombin, a layer of fibrinogen/collagen, 

a second layer of thrombin, a second layer of 

fibrinogen/collagen, and a final layer of thrombin 

(Figure 6) [38]. 

 

Human stem cell based corneal tissue 

mimicking structures using laser-assisted 3D 

bioprinting and functional bioinks 

The cornea is the transparent anterior part of the 

eye, which is a critical part for vision. Corneal 

blindness due to trauma or diseases is a serious 

ophthalmic condition that affects millions of 

people worldwide. Therefore, a significant 

volume of research has been devoted to meet the 

high demand for developing methods to produce 

more native-like 3D corneal structures [39-41]. In 

a recent study, researchers produced 3D cornea-

mimicking tissues using human stem cells and 

laser-assisted bioprinting (LaBP). 
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Figure 6: A schematic depiction of the approach of in-situ laser based bioprinting of artificial skin 

[Source:  Burns & Trauma (2018)]. 
 

Researchers used human embryonic stem cell 

derived limbal epithelial stem cells (hESC-LESC) 

as a cell source for printing epithelium-mimicking 

structures. Whereas human adipose tissue derived 

stem cells (hASCs) were used for constructing 

layered stroma-mimicking structures. It was 

shown that the development and optimization of 

functional bioinks was a crucial step towards 

successful bioprinting of 3D corneal structures 

(Figure 7) [42]. Further, in this study, recombinant 

human laminin and human sourced collagen I 

served as the bases for the functional bioinks. 

Researchers employed two previously established 

LaBP setups based on laser induced forward 

transfer, with different laser wavelengths and 

appropriate absorption layers [42]. In this study, 

researchers bioprinted three types of corneal 

structures that included stratified corneal 

epithelium using hESC-LESCs, lamellar corneal 

stroma using alternating acellular layers of bioink 

and layers with hASCs, and finally structures with 

both a stromal and epithelial part. The printed 

constructs were then evaluated for their 

microstructure, cell viability and proliferation, and 

key protein expression (Ki67, p63α, p40, CK3, 

CK15, collagen type I, VWF).  

Further, the 3D printed stromal constructs 

were also implanted into porcine corneal organ 

cultures that showed both cell types maintained 

good viability after printing. This was the first 

study to demonstrate the feasibility of 3D LaBP 

for corneal applications using human stem cells 

and successful fabrication of layered 3D 

bioprinted tissues that mimicked the structure of 

the native corneal tissue [42]. 
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Figure 7: (Top) Schematic diagram of the laser-assisted bioprinting system and printing of the 3D stromal 

mimicking structures.  (Bottom) (A-C) a proof-of-concept to fabricate tissue-engineered cornea using both 

investigated human stem cell types (the bioprinted 3D cornea fabricated on PET substrate showing 

moderate transparency, while printing on non-transparent Matriderm® substrate was required to avoid 

shrinkage of the structure during culture). It also shows comparison between the 3D bioprinted corneal 

tissue and the native human cornea (Hematoxylin and eosin (HE)-staining shows the structure of the 

bioprinted tissue) [Source: Biomaterials (2018)].   

 

Conclusion 

We have presented an overview of laser based 

bioprinting of 3D tissue constructs, which is 

considered a very promising area of current 

research and developments into tissue engineering 

and regenerative medicine. Laser based 3D 

bioprinting is a multidisciplinary field that is 

bringing together experts in cell biology, 

mechanical engineering, biotechnology, 

biomaterials science and laser science and 

engineering, to name a few. Studies conducted so 

far have shown tremendous potential of stem-cell 
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bioprinting as a source for renewable human tissue 

that offers a technological breakthrough in 

creating organs that are biocompatible. In this 

regard, early research on various types of artificial 

tissues have shown promise using bioprinted stem 

cells from liver to brain.  

More studies will probably be needed in 

the field of personalized 3D printing technology. 

One specific area is fabricating artificial pancreas 

for diabetic patients. It is believed that future 

studies will focus on printing micro-organs that 

include pancreas islet tissues that function in the 

absence of the complete pancreas structure.  This 

will benefit hundreds of millions of diabetic 

patients around the globe. However, the challenge 

will be to address a series of regulatory hurdles in 

the specified printed product. We anticipate a 

transition of printing adult stem cells to clinical 

trials and eventually to medical industry in the 

near future. The future of laser assisted 3D 

bioprinting in tissue engineering looks very 

promising. 
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Biotechnology Advances around the World 

Editor’s Picks 

 
Every issue of Biotechnology Kiosk presents select latest research news picked by the editors-in-chief on 

significant research breakthroughs in different areas of biotechnology around the world. The aim is to 

promote further R&D in all of these cutting-edge areas of biotechnology. The editors have compiled and 

included the following innovations and breakthroughs to highlight the latest biotechnology advances.  
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       Co Editor-in-Chief      Co Editor-in-Chief
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Infectious Disease 

Deficiency in vitamin D and COVID-19 severity 

 

Vitamin D is widely recognized for its health 

benefits and especially for its role in bone health. 

Studies have suggested that low levels of vitamin 

D have been associated with a range of complex 

medical conditions that include autoimmune, 

cardiovascular, and infectious diseases, to name a 

few. During and post COVID-19 pandemic, health 

officials encouraged people to take vitamin D, due 

to its well perceived role in promoting immune 

response that could protect against COVID-19. 

In a new study, researchers from Israel 

showed a correlation between vitamin D 

deficiency and COVID-19 severity and mortality. 

The study was among the first to analyze vitamin 

D levels prior to infection. The findings facilitated 

a more accurate assessment than during 

hospitalization, when levels may be lower 

secondary to the viral illness. 

This study was published in the journal 

PLOS ONE (Pre-infection 25-hydroxyvitamin D3 

levels and association with severity of COVID-19 

illness. PLOS ONE, 2022; 17 (2): e0263069 DOI: 

https://doi.org/10.1371/journal.pone.0263069 ) by 

researchers from the Azrieli Faculty of Medicine 

of Bar-Ilan University in Safed, Israel and the 

Galilee Medical Center in Nahariya, Israel. 

Researchers studied the records of 1,176 

patients admitted between April 2020 and 

February 2021 to the Galilee Medical Center 

(GMC) with positive PCR tests that were searched 

for vitamin D levels measured two weeks to two 

years prior to infection. It was found that patients 

with vitamin D deficiency (less than 20 ng/mL) 

were 14 times more likely to have severe or critical 

case of COVID than those with more than 40 

ng/mL. 

The interesting finding was about 

mortality among patients that showed 2.3% with 

sufficient vitamin D levels was in contrast to 

25.6% in the vitamin D deficient group. 

This study makes significant contribution 

to a continually evolving body of evidence 

suggesting that a patient's history of vitamin D 

deficiency could be a predictive risk factor 

associated with poorer COVID-19 clinical disease 

course and mortality.  

Compiled and Edited by Dr. Megha Agrawal 

and Dr. Shyamasri Biswas. 
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